Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pathogens ; 12(3)2023 Mar 11.
Article in English | MEDLINE | ID: covidwho-2279745

ABSTRACT

BACKGROUND: SARS-CoV-2 related immunopathology may be the driving cause underlying severe COVID-19. Through an immunophenotyping analysis on paired bronchoalveolar lavage fluid (BALF) and blood samples collected from mechanically ventilated patients with COVID-19-associated Acute Respiratory Distress Syndrome (CARDS), this study aimed to evaluate the cellular immune responses in survivors and non-survivors of COVID-19. METHODS: A total of 36 paired clinical samples of bronchoalveolar lavage fluid (BALF) mononuclear cells (BALF-MC) and peripheral blood mononuclear cells (PBMC) were collected from 18 SARS-CoV-2-infected subjects admitted to the intensive care unit (ICU) of the Policlinico Umberto I, Sapienza University Hospital in Rome (Italy) for severe interstitial pneumonia. The frequencies of monocytes (total, classical, intermediate and non-classical) and Natural Killer (NK) cell subsets (total, CD56bright and CD56dim), as well as CD4+ and CD8+ T cell subsets [naïve, central memory (TCM) and effector memory (TEM)], and those expressing CD38 and/or HLADR were evaluated by multiparametric flow cytometry. RESULTS: Survivors with CARDS exhibited higher frequencies of classical monocytes in blood compared to non-survivors (p < 0.05), while no differences in the frequencies of the other monocytes, NK cell and T cell subsets were recorded between these two groups of patients (p > 0.05). The only exception was for peripheral naïve CD4+ T cells levels that were reduced in non-survivors (p = 0.04). An increase in the levels of CD56bright (p = 0.012) and a decrease in CD56dim (p = 0.002) NK cell frequencies was also observed in BALF-MC samples compared to PBMC in deceased COVID-19 patients. Total CD4+ and CD8+ T cell levels in the lung compartment were lower compared to blood (p = 0.002 and p < 0.01, respectively) among non-survivors. Moreover, CD38 and HLA-DR were differentially expressed by CD4+ and CD8+ T cell subsets in BALF-MC and in PBMC among SARS-CoV-2-infected patients who died from COVID-19 (p < 0.05). CONCLUSIONS: These results show that the immune cellular profile in blood and pulmonary compartments was similar in survivors and non-survivors of COVID-19. T lymphocyte levels were reduced, but resulted highly immune-activated in the lung compartment of patients who faced a fatal outcome.

2.
EBioMedicine ; 65: 103246, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1108220

ABSTRACT

BACKGROUND: While SARS-CoV-2 similarly infects men and women, COVID-19 outcome is less favorable in men. Variability in COVID-19 severity may be explained by differences in the host genome. METHODS: We compared poly-amino acids variability from WES data in severely affected COVID-19 patients versus SARS-CoV-2 PCR-positive oligo-asymptomatic subjects. FINDINGS: Shorter polyQ alleles (≤22) in the androgen receptor (AR) conferred protection against severe outcome in COVID-19 in the first tested cohort (both males and females) of 638 Italian subjects. The association between long polyQ alleles (≥23) and severe clinical outcome (p = 0.024) was also validated in an independent cohort of Spanish men <60 years of age (p = 0.014). Testosterone was higher in subjects with AR long-polyQ, possibly indicating receptor resistance (p = 0.042 Mann-Whitney U test). Inappropriately low serum testosterone level among carriers of the long-polyQ alleles (p = 0.0004 Mann-Whitney U test) predicted the need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of testosterone, patients with long-polyQ and age ≥60 years had increased levels of CRP (p = 0.018, not accounting for multiple testing). INTERPRETATION: We identify the first genetic polymorphism that appears to predispose some men to develop more severe disease. Failure of the endocrine feedback to overcome AR signaling defects by increasing testosterone levels during the infection leads to the polyQ tract becoming dominant to serum testosterone levels for the clinical outcome. These results may contribute to designing reliable clinical and public health measures and provide a rationale to test testosterone as adjuvant therapy in men with COVID-19 expressing long AR polyQ repeats. FUNDING: MIUR project "Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020) and "Bando Ricerca COVID-19 Toscana" project to Azienda Ospedaliero-Universitaria Senese. Private donors for COVID-19 research and charity funds from Intesa San Paolo.


Subject(s)
COVID-19/pathology , Peptides/genetics , Receptors, Androgen/genetics , Aged , Case-Control Studies , Critical Care/statistics & numerical data , Female , Genome, Human/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Spain , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL